

Order this document
 by TPUPN13/D

SEMICONDUCTOR

MOTOROLA

PROGRAMMING NOTE

STEPPER MOTOR (SM) TPU Function
By Alphonso Gonzalez

1 Functional Overview
The stepper motor control function (SM) accelerates and decelerates a stepper motor linearly. Up to 14
step rates can be used. SM allows a stepper motor to rotate continuously or be used for discrete posi-
tioning. The CPU provides the desired step position in a 16-bit parameter, and the TPU steps the motor
to the desired position using an acceleration/deceleration profile. The parameter indicating the desired
position can be changed by the CPU while the TPU is stepping the motor. The algorithm can change
control strategy each time a new step command is received.

A 16-bit parameter initialized by the CPU for each channel defines the output state of the pin. The bit
pattern written by the CPU defines the method of stepping, such as full stepping or half stepping. With
each transition, the 16-bit parameter rotates one bit. The period of each transition is defined by the pro-
grammed step rate.

2 Detailed Description
Any sequential group of up to eight channels can generate the control logic necessary to drive a stepper
motor. A group of two or four TPU channels is used. There are two types of stepper motor channels:
primary and secondary. The lowest numbered channel is the primary channel, or master, and the higher
numbered channels are the secondary channels, or slaves. The secondary channels are serviced by
the primary channel except during channel initialization.

To issue a step command, the CPU writes the desired step position to DESIRED_POSITION and gen-
erates an HSR on the primary channel. CURRENT_POSITION, containing the current step position, is
updated continuously by the TPU as the motor is stepped. If DESIRED_POSITION is greater than
STEP_RATE_CNT steps from the CURRENT_POSITION, the TPU accelerates the stepper motor by
the programmed acceleration rate, steps at the run rate (maximum programmed rate), and then decel-
erates the stepper motor by the programmed acceleration rate, stopping at the desired position. If
DESIRED_POSITION is within STEP_RATE_CNT or fewer steps from the CURRENT_POSITION, the
TPU steps the motor to the position at the start/stop rate (minimum programmed rate).

The SM algorithm allows a change of the control strategy every time a new step command is received,
i.e., every time DESIRED_POSITION is changed. The advantages of this scheme become obvious
when, for example, DESIRED_POSITION is changed from step 50 to step 10, while stepping has pro-
ceeded from step 10 to step 30. Upon the change of DESIRED_POSITION, the TPU decelerates the
stepper motor, changes the direction of step, accelerates to the run rate, and decelerates to position 10.

The time period between steps (P) is defined by the following:

P(r) = K1– K2 ∗ r

where r is the current step rate (1–14), and K1 and K2 are programmable constants.

STEP_CNTL0 and STEP_CNTL1 define the linear acceleration rate. These parameters relate to K1
and K2 as shown in the following equation.
© MOTOROLA INC, 1997

K1 = STEP_CNTL1 – STEP_CNTL0

K2 = STEP_CNTL0

Thus,

P(r) = STEP_CNTL1 – STEP_CNTL0 ∗ (1 + r)

Timer TCR1 is used for matching; therefore, the weighting of the least significant bits (LSB) of
STEP_CNTL0 and STEP_CNTL1 is defined to be equal to that of TCR1.

From one to fourteen step rates can be implemented. Two cases exist: STEP_RATE_CNT equals one,
or STEP_RATE_CNT is more than one but less than 15. In both cases, when the host provides a new
desired position and issues a step request, a delay of P(1) expires before the first step is taken. This
delay ensures that the final step of the motor, due to a previous step request, is not disturbed before a
time of P(1) has expired. P(1) is also the last programmed step rate used when decelerating to the final
step position and the step rate at which a change of direction occurs. When STEP_RATE_CNT is one,
P(1) represents the start/stop rate as well as the run rate.

When STEP_RATE_CNT is greater than one, P(1) is the step rate at which a change of direction in
stepping will occur, P(2) is the start rate, and P(STEP_RATE_CNT) is the run rate. When the condition for
changing step direction arises, the stepper motor decelerates to step rate P(1), and the next step is tak-
en in the opposite direction at step rate P(2). How these parameters are used is an important consider-
ation when determining K1 and K2 constants.

PIN_CONTROL associated with each SM channel determines the direction of stepping and whether full
or half stepping is to be used. Whenever DESIRED_POSITION is greater than CURRENT_POSITION,
the bit pattern of PIN_CONTROL from least significant bit (LSB) to most significant bit (MSB) defines
the output levels at the programmed step rates. Whenever DESIRED_POSITION is less than
CURRENT_POSITION, the bit pattern of PIN_CONTROL from MSB to LSB defines the output levels
at the programmed step rates.

During initialization, SM employs CHANNEL_CONTROL to configure the channel, using the data sup-
plied by the host CPU. The TPU then fills CHANNEL_CONTROL with a copy of PIN_CONTROL for
configuring the pin level. With each step taken, another bit of the copy of PIN_CONTROL in
CHANNEL_CONTROL is used to configure the pin level, then CHANNEL_CONTROL is rotated in the
appropriate direction and written back. After rotating 16 bits to the left or right, CHANNEL_CONTROL
is again updated with PIN_CONTROL.

2.1 Stepper Motor Initialization

In the following example, the stepper motor is assumed to be controlled by channels 4–7. Channel 4 is
considered the master channel and channels 5, 6, and 7 are the secondary channels. The user should
do the following:

1. Set each channel's function select register to the SM algorithm (write the SM function select
value to address $FFFE10).

2. Write the pin control bit pattern to each channel's pin control parameter (addresses $YFFF42,
$YFFF52, $YFFF62, and $YFFF72). For full stepping, the parameters may be $CCCC, $3333,
$9999, and $6666 for channels 4, 5, 6, and 7, respectively.

3. Set each channel control parameter (addresses $YFFF40, $YFFF50, $YFFF60, and $YFFF70)
to operate with the appropriate TCR (typically TCR1) and configure pins as outputs. Force each
initial pin state to be the same as bit 15 of the respective pin control parameter.

4. In the master channel, set the current position parameter to the presumed midpoint location
(address $YFFF44).

5. Set the next step rate to one and the modulo count to zero in the master channel ($0001 to ad-
dress $YFFF48).
 MOTOROLA TPU Programming Library
2 TPUPN13/D

6. Set the last secondary channel number to seven (for channel number 7) and the step count to
the number of different step rates (1 to 14) in the master channel ($0x07 to address $YFFF4A).

7. Set the step control parameters in the first secondary channel (channel number 5, addresses
$YFFF54, $YFFF56).

STEP_CNTL0 is the difference between the time interval of two adjacent steps dur-
ing acceleration or deceleration (assuming the step rate count is > 1). With ten step
rates, the period of the longest time interval is 4 ms, followed by intervals of 3.8,
3.6, 3.4, 3.2, 3.0, 2.8, 2.6, 2.4 ms and the rest of the intervals (until deceleration
begins) are 2.2 ms between each step. The change in step rate is therefore 0.2 ms,
and assuming that TCR1 increments every 10 µs, STEP_CNTL0 is set to (0.2 ms/
10 µs) = 20 TCR counts.

STEP_CNTL1 is calculated from equation P(r), as follows:

P(r) = STEP_CNTL1 – STEP_CNTL0 ∗ (1 + r)

P(r) = STEP_CNTL1 – 20 ∗ (1 + r)

at r = 1; P(1) = 4.0 ms = 400 TCR counts

400 = STEP_CNTL1 – (20 ∗ 2)

STEP_CNTL1 = 400 + (20 ∗ 2)

STEP_CNTL1 = 440
8. If interrupts are desired, then set the interrupt enable bit for channel 4 by performing an OR be-

tween the contents of address $YFFE0A and the value $0010.
9. Execute an HSR for initialization of each channel by writing $AA00 to address $YFFE1A.
10. Turn on each channel by writing to the channel priority register (For mid priority, write $AA00 to

address $YFFE1E).

The channels are now configured for operation. The initialization state sets the outputs to their initial
levels. A step request is made by writing the new step destination into the desired position parameter
of the master channel (address $YFFF46) and by requesting a step from the HSR register ($0300 to
address $YFFE1A).

Since stepper motor position is always relative to a start point, the motor is usually positioned or re-
stored to a zero reference location. One technique is to initialize the desired position to zero, and the
present position to beyond the maximum position, thereby causing the motor to step against a fixed stop
from whatever location it is in when initialization takes place. Another method requires a zero-point
switch or sensor. This positional reset is accomplished by interrupts. The master channel for the stepper
motor algorithm is set to generate interrupts, and software flags keep track of the current operation. The
algorithm generates an interrupt after initialization and after every step request.

2.2 Stepper Motor Interrupts

Following is a sequence of pseudocode that uses a separate zero-point sensor to cause interrupts,
saves the position of the stepper corresponding to the zero point, and sets the flag indicating that the
motor has been zeroed (and clears the interrupt enable for the master stepper channel). Normal oper-
ation does not cause interrupts, but an attempt to return to the zero point causes an interrupt.

Clear interrupt flag

IF the stepper channel has been initialized THEN continue

ELSE

Set initialized flag

IF at point zero

THEN Set zeroed flag

Save zero location
TPU Programming Library MOTOROLA
TPUPN13/D 3

Quit

ELSE Step request down

Set seek flag down

Quit

END IF

END IF

IF the stepper motor has been zeroed THEN continue

ELSE (Note 1)

IF the seek flag is up

THEN Step request down

Set seek flag down

Quit

ELSE Step request up

Set seek flag up

Quit

END IF

END IF

IF the stepper motor is still not zeroed

THEN (Note 2)

Clear zeroed flag

IF the seek flag is up

THEN Step request down

Set seek flag down

Quit

ELSE Step request up

Set seek flag up

Quit

END IF

ELSE **No reason for interrupt**

Quit

END IF

NOTES:

1. Initialized but not zeroed. The interrupt must indicate that the first step request down is com-
plete without encountering the zero switch (or possibly has already sought both directions and
not encountered the zero sensor). The motor may be too far below the switch, and should,
therefore, seek upwards (or down again).

2. This is an error case. Either the interrupt has no reason, or the zero point is not yet found (the
motor is lost). In that case, begin seeking for the zero point.

3 Function Code Size
Total TPU function code size determines what combination of functions can fit into a given ROM or em-
ulation memory microcode space. SM function code size is:

63 µ instructions + 6 entries = 69 long words
 MOTOROLA TPU Programming Library
4 TPUPN13/D

4 Function Parameters
This section provides detailed descriptions of discrete input/output function parameters stored in chan-
nel parameter RAM. Figure 1 shows TPU parameter RAM address mapping. Figure 2 shows the pa-
rameter RAM assignment used by the SM function. In the diagrams, Y = M111, where M is the value of
the module mapping bit (MM) in the system integration module configuration register (Y = $7 or $F).

— = Not Implemented (reads as $00)

Figure 1 TPU Channel Parameter RAM CPU Address Map

Figure 2 shows all of the host interface areas for the SM function, described in 5 Host Interface to
Function, as well as the parameters, addresses, reference times, and reference sources. This segment
lists and defines the parameters for all modes of the SM time function.

Channel Base Parameter Address

Number Address 0 1 2 3 4 5 6 7

0 $YFFF## 00 02 04 06 08 0A — —

1 $YFFF## 10 12 14 16 18 1A — —

2 $YFFF## 20 22 24 26 28 2A — —

3 $YFFF## 30 32 34 36 38 3A — —

4 $YFFF## 40 42 44 46 48 4A — —

5 $YFFF## 50 52 54 56 58 5A — —

6 $YFFF## 60 62 64 66 68 6A — —

7 $YFFF## 70 72 74 76 78 7A — —

8 $YFFF## 80 82 84 86 88 8A — —

9 $YFFF## 90 92 94 96 98 9A — —

10 $YFFF## A0 A2 A4 A6 A8 AA — —

11 $YFFF## B0 B2 B4 B6 B8 BA — —

12 $YFFF## C0 C2 C4 C6 C8 CA — —

13 $YFFF## D0 D2 D4 D6 D8 DA — —

14 $YFFF## E0 E2 E4 E6 E8 EA EC EE

15 $YFFF## F0 F2 F4 F6 F8 FA FC FE
TPU Programming Library MOTOROLA
TPUPN13/D 5

Y= Channel number

Figure 2 Function Parameter RAM Assignment

4.1 CHANNEL_CONTROL

The CPU must write CHANNEL_CONTROL for the primary and for all secondary channels prior to ini-
tialization in order to establish initial PSC, PAC, and TBS fields. The PSC field forces the output level
of the pin directly without affecting the pin action control latches and should be configured to force the
same level as bit 15 of PIN_CONTROL. The PAC field is not used. The following table defines the al-
lowable data for this parameter. CHANNEL_CONTROL PSC field should be initialized to the same level
as the MSB of PIN_CONTROL.

PRIMARY CHANNEL

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

$YFFFW0 CHANNEL_CONTROL

$YFFFW2 PIN_CONTROL

$YFFFW4 CURRENT_POSITION

$YFFFW6 DESIRED_POSITION

$YFFFW8 0 0 0 0 MOD_CNT 0 0 0 0 NEXT_STEP_RAT
E

$YFFFWA 0 0 0 0 STEP_RATE_CNT 0 0 0 0 LAST_SEC_CHAN

SECONDARY CHANNEL 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

$YFFFW0 CHANNEL_CONTROL

$YFFFW2 PIN_CONTROL

$YFFFW4 STEP_CNTL0

$YFFFW6 STEP_CNTL1

$YFFFW8

$YFFFWA

SECONDARY CHANNELS 2 — 7

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

$YFFFW0 CHANNEL_CONTROL

$YFFFW2 PIN_CONTROL

$YFFFW4

$YFFFW6

$YFFFW8

$YFFFWA

Parameter Write Access:

Written by CPU

Written by TPU

Written by CPU and TPU

Unused parameters
 MOTOROLA TPU Programming Library
6 TPUPN13/D

After configuring the channel latches in initialization, the TPU fills CHANNEL_CONTROL with a copy of
PIN_CONTROL, which later is used to configure the pin level. Each time the TPU services an SM chan-
nel, it rotates the content of CHANNEL_CONTROL in the appropriate direction and then uses bit 15 of
CHANNEL_CONTROL to configure the pin level. After CHANNEL_CONTROL is rotated 16 bits to the
left or right, SM again copies PIN_CONTROL into CHANNEL_CONTROL.

4.2 PIN_CONTROL

PIN_CONTROL contains data representing the sequence of pin transitions. This 16-bit parameter must
be initialized by the CPU for all channels used for stepper motor control. The bit pattern of the parameter
indicates the sequence of output states of the pin. As an example for full-stepping sequence, typical
parameters for two channels are $3333 and $9999. For half-stepping sequence, typical parameters are
$E0E0, $0E0E, $8383, and $3838 for four successive channels, respectively. An illustrated example of
PIN_CONTROL data follows for full stepping a two-phase motor.

When DESIRED_POSITION is greater than CURRENT_POSITION, the bit pattern from LSB to MSB
defines the output levels at the programmed step rates, i.e., bit 0 is moved into bit 15, to define the out-
put. The output pins are sequenced as shown.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NOT USED TBS PAC PSC

SM CHANNEL_CONTROL Options

TBS PAC PSC Action

8 7 6 5 4 3 2 1 0 Input Output

0 1
1 0
1 1

—
—
—

Force Pin High
Force Pin Low
Do Not Force Any State

0 1 x x
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 x x x

—
—
—
—

Do Not Change TBS

Output Channel
Capture TCR1, Match TCR1
Capture TCR1, Match TCR2
Capture TCR2, Match TCR1
Capture TCR2, Match TCR2
Do Not Change TBS

4.2.1 Primary Channel

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

4.2.2 Secondary Channel

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1
TPU Programming Library MOTOROLA
TPUPN13/D 7

When DESIRED_POSITION is less than CURRENT_POSITION, the bit pattern from MSB to LSB de-
fines the output levels at the programmed step rates, i.e., bit 14 is moved into bit 15 to define the output.
The output pins are sequenced as shown.

4.3 CURRENT_POSITION

CURRENT_POSITION contains the current step position of the stepper motor. This unsigned parame-
ter is incremented or decremented each time CHANNEL_CONTROL is rotated. In other words, in a full-
step configuration, each count represents a full step; in a half-step configuration, each count represents
a half step.

4.4 DESIRED_POSITION

DESIRED_POSITION contains the desired position of the stepper motor and is updated by the CPU.
The range for DESIRED_POSITION is $0 to ($FFFF–STEP_RATE_CNT), unsigned.

4.5 LAST_SEC_CHAN

LAST_SEC_CHAN contains the channel number of the last secondary channel among the channels to
be sequentially grouped, beginning with the primary channel, to synthesize the SM algorithm. The CPU
updates this parameter. The upper four bits of this parameter must be set to zero.

4.6 STEP_RATE_CNT

STEP_RATE_CNT contains the number of step rates used in the acceleration/deceleration profile. The
CPU updates this parameter to a value between 1 and 14 ($1–$E).

4.7 NEXT_STEP_RATE

NEXT_STEP_RATE contains the step rate to be programmed after the current step is complete. This
parameter must be initialized to one by the CPU and is updated subsequently by the TPU.

1081A-1

PRIMARY PIN

SECONDARY PIN

1081A-2

PRIMARY PIN

SECONDARY PIN
 MOTOROLA TPU Programming Library
8 TPUPN13/D

4.8 MOD_CNT

MOD_CNT indicates the four-bit modulo count for the number of rotations that have occurred.
MOD_CNT must be initialized to $0 by the CPU and subsequently is updated by the TPU. This param-
eter is incremented and decremented concurrently with CURRENT_POSITION. When MOD_CNT
equals zero, PIN_CONTROL is copied to CHANNEL_CONTROL.

4.9 STEP_CNTL0 and STEP_CNTL1

STEP_CNTL0 and STEP_CNTL1, located in the first secondary channel, are updated by the CPU, and
specify the acceleration/deceleration rate described earlier.

All 16 bits of STEP_CNTL0 and STEP_CNTL1 may be used in defining constants K1 and K2; however,
the time period between steps P(r) must be less than $8000 for all programmed step rates.

5 Host Interface to Function
This section provides information concerning the TPU host interface to the function. Figure 3 is a TPU
address map. Detailed TPU register diagrams follow the figure. In the diagrams, Y = M111, where M is
the value of the module mapping bit (MM) in the system integration module configuration register (Y =
$7 or $F).

Figure 3 TPU Address Map

Address 15 8 7 0

$YFFE00 TPU MODULE CONFIGURATION REGISTER (TPUMCR)

$YFFE02 TEST CONFIGURATION REGISTER (TCR)

$YFFE04 DEVELOPMENT SUPPORT CONTROL REGISTER (DSCR)

$YFFE06 DEVELOPMENT SUPPORT STATUS REGISTER (DSSR)

$YFFE08 TPU INTERRUPT CONFIGURATION REGISTER (TICR)

$YFFE0A CHANNEL INTERRUPT ENABLE REGISTER (CIER)

$YFFE0C CHANNEL FUNCTION SELECTION REGISTER 0 (CFSR0)

$YFFE0E CHANNEL FUNCTION SELECTION REGISTER 1 (CFSR1)

$YFFE10 CHANNEL FUNCTION SELECTION REGISTER 2 (CFSR2)

$YFFE12 CHANNEL FUNCTION SELECTION REGISTER 3 (CFSR3)

$YFFE14 HOST SEQUENCE REGISTER 0 (HSQR0)

$YFFE16 HOST SEQUENCE REGISTER 1 (HSQR1)

$YFFE18 HOST SERVICE REQUEST REGISTER 0 (HSRR0)

$YFFE1A HOST SERVICE REQUEST REGISTER 1 (HSRR1)

$YFFE1C CHANNEL PRIORITY REGISTER 0 (CPR0)

$YFFE1E CHANNEL PRIORITY REGISTER 1 (CPR1)

$YFFE20 CHANNEL INTERRUPT STATUS REGISTER (CISR)

$YFFE22 LINK REGISTER (LR)

$YFFE24 SERVICE GRANT LATCH REGISTER (SGLR)

$YFFE26 DECODED CHANNEL NUMBER REGISTER (DCNR)
TPU Programming Library MOTOROLA
TPUPN13/D 9

CFS[4:0] — SM Function Number (Assigned during microcode assembly)

No host sequence encodings are implemented for the SM function.

CIER — Channel Interrupt Enable Register $YFFE0A

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CH 15 CH 14 CH 13 CH 12 CH 11 CH 10 CH 9 CH 8 CH 7 CH 6 CH 5 CH 4 CH 3 CH 2 CH 1 CH 0

CH Interrupt Enable

0 Channel interrupts disabled

1 Channel interrupts enabled

CFSR[0:3] — Channel Function Select Registers $YFFE0C – $YFFE12

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CFS (CH 15, 11, 7, 3) CFS (CH 14, 10, 6, 2) CFS (CH 13, 9, 5, 1) CFS (CH 12, 8, 4, 0)

HSQR[0:1] — Host Sequence Registers $YFFE14 – $YFFE16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CH 15, 7 CH 14, 6 CH 13, 5 CH 12, 4 CH 11, 3 CH 10, 2 CH 9, 1 CH 8, 0

HSRR[1:0] — Host Service Request Registers $YFFE18 – $YFFE1A

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CH 15, 7 CH 14, 6 CH 13, 5 CH 12, 4 CH 11, 3 CH 10, 2 CH 9, 1 CH 8, 0

CH Initialization

00 No Host Service Request

01 No Host Service Request

10 Initialization

11 Step Request

CPR[1:0] — Channel Priority Registers $YFFE1C – $YFFE1E

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CH 15, 7 CH 14, 6 CH 13, 5 CH 12, 4 CH 11, 3 CH 10, 2 CH 9, 1 CH 8, 0

CH Channel Priority

00 Disabled

01 Low

10 Middle

11 High

CISR — Channel Interrupt Status Register $YFFE20

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CH 15 CH 14 CH 13 CH 12 CH 11 CH 10 CH 9 CH 8 CH 7 CH 6 CH 5 CH 4 CH 3 CH 2 CH 1 CH 0

CH Interrupt Status

0 Channel interrupt not asserted

1 Channel interrupt asserted
 MOTOROLA TPU Programming Library
10 TPUPN13/D

6 Function Configuration
The CPU configures both the primary and secondary channels as follows:

1. Updates channel parameters for all primary and secondary channels;
2. Generates an HSR %10 on each channel for initialization; and
3. Enables channel servicing by assigning a high, middle, or low priority.

The TPU then initializes the primary and each secondary channel. The CPU should monitor the HSR
register until the TPU clears the service request of all SM channels to 00 before changing any param-
eters or before issuing a new service request to the primary channel. Next, the CPU issues a request
for stepping by updating DESIRED_POSITION with the desired step position and by generating an HSR
%11 on the primary channel. Further CPU interface with the secondary channels is not required.

7 Performance of Function
Like all TPU functions, SM function performance in an application is to some extent dependent upon
the service time (latency) of other active TPU channels. This is due to the operational nature of the
scheduler. When more TPU channels are active, performance decreases. However, worst-case latency
in any TPU application can be closely estimated. To analyze the performance of an application that ap-
pears to approach the limits of the TPU, use the guidelines given in the TPU reference manual and in
the table below.

NOTES
1.Includes one master plus one slave:
(a) add 32 clocks and two RAM accesses for each additional slave, and
(b) add (STEP_RATE_CNT ∗ two clocks).

SM State Timing

State Name Clock
Cycles

RAM
Accesses

Conditions

S1 Init 8 2 —

S2 Step_Request 1341 15 —

S3 Right_Rot_Chn_Cntl 1601

1221

21

14

Motor has decelerated and
step direction changed.
All other cases

S4 Left_Rot_Chn_Cntl 1581

1201

21

14

Motor has decelerated and
step direction changed.
All other cases
TPU Programming Library MOTOROLA
TPUPN13/D 11

8 Function Example

8.1 Continuous Rotation

8.1.1 Introduction

This example illustrates how to continuously rotate a stepper motor using the SM algorithm. It begins
by detailing the connections used to interface the motor and concludes with a discussion of program-
ming for continuous rotation. Code listings for modular microcontroller CPU32 and CPU16 modules are
included at the end of the example.

8.1.1.1 Logic-to-Motor Interface

The stepper motor used in this example operates on a twelve volt direct current input. The motor can
be configured for bipolar operation. This means that voltage of the stepping sequence varies from zero
to twelve volts. For a unipolar motor, the voltage varies from a negative voltage to a positive voltage.
The stepping sequence followed by the motor is shown below. The two phases of the stepper motor
windings correspond to φα and φβ.

The logic output to the stepper motor varies from zero at the low state (0) to five at the high state (1).
The outputs are driven from channels four through seven (TPUCH4 – TPUCH7) of the TPU. Because
of the voltage difference between the logic outputs and the voltage requirement of the stepper motor,
an interface must be used.

The logic-to-motor interface (LMI), Motorola product DEVB-103, is an evaluation board used to interface
logic inputs to motor drives. The LMI contains a complementary H-Bridge. It can be used to interface
stepper motors as well as brush DC motors. For further information on the device, refer to Motorola Ap-
plication Note AN1300.

The motor is connected as shown below. The interface requires two LMI devices. Each LMI drives a
different phase of the stepper motor.

8.1.1.2 Programming for Continuous Rotation

Programming the TPU for stepper motor control requires two procedures: initialization and step re-
quests. These procedures are accomplished by moving information into the appropriate parameter
RAM locations and then issuing a host service request for initialization or step request.

The channels used for stepping must be adjacent. The primary channel used for stepping should be the
lowest. The remaining channels used for stepping are considered secondary channels. In this example,
channel four is the primary channel and channels five through seven are the secondary channels.

MOTOR

ENCODER

LOGIC TO
MOTOR

INTERFACE(S)

TPU φα1

φβ1

φα2

φβ2

ENCODER

STEPPING SEQUENCE

CW ROTATION CCW ROTATION

1 1 0 0

1 0 0 1

0 0 1 1

0 1 1 0

0 0 1 1

1 0 0 1

1 1 0 0

0 1 1 0

TPU STEP DATA BLOCK

MOTOR
 MOTOROLA TPU Programming Library
12 TPUPN13/D

8.1.1.3 Initialization

The initialization procedure configures the required channels. The parameters STEP_CNTL0 and
STEP_CNTL1 are configured for the particular motor used. The DESIRED_POSITION and
CURRENT_POSITION are set to be equal. Then, a request for initialization is issued on the SM chan-
nels.

The step request portion of the program is accomplished in the CYCLE subroutine. This short subrou-
tine changes the desired position to zero and then issues a step request by moving 11 into the HSR
address ($FFFE1A) of the primary channel. The TPU then determines which direction to rotate the step-
per motor. Finally, the branch always command causes the program to loop back to the CYCLE sub-
routine. The effect of looping the program and resetting the DESIRED_POSITION counter is like
walking on a treadmill. The TPU attempts to increment the CURRENT_POSITION, but the counter is
reset before reaching the DESIRED_POSITION. The result is continuous rotation of the stepper motor.

As long as the difference between the CURRENT_POSITION and DESIRED_POSITION is large
enough not to equalize during the loop, the motor will not stop rotating. Also, it is not sufficient to simply
change the CURRENT_POSITION or DESIRED_POSITION locations. An HSR for step request must
be made so that SM can perform the appropriate action.

8.2 Listing for CPU32-Based Microcontrollers
Objective: This program continually rotates a stepper motor.
Method: The stepper motor is driven by TPUCH4 through TPUCH7 in a full-step sequence using

the SM Algorithm.

This program was assembled using the IASM32 assembler available from P&E Microcomputer Sys-
tems with the M68332 In-Circuit Debugger. It was run on an M68332EVS and BCC.

CFSR2 equ $fffe10

CFSR3 equ $fffe12

HSQR0 equ $fffe14

HSQR1 equ $fffe16

HSRR0 equ $fffe18

HSRR1 equ $fffe1a

CPR1 equ $fffe1e

PRAM4_0 equ $ffff40

PRAM4_1 equ $ffff42

PRAM4_2 equ $ffff44

PRAM4_3 equ $ffff46

PRAM4_4 equ $ffff48

PRAM4_5 equ $ffff4a

PRAM5_0 equ $ffff50

PRAM5_1 equ $ffff52

PRAM5_2 equ $ffff54

PRAM5_3 equ $ffff56

PRAM5_4 equ $ffff58

PRAM5_5 equ $ffff5a

PRAM6_0 equ $ffff60

PRAM6_1 equ $ffff62

PRAM6_2 equ $ffff64

PRAM6_3 equ $ffff66

PRAM6_4 equ $ffff68

PRAM6_5 equ $ffff6a

PRAM7_0 equ $ffff70

PRAM7_1 equ $ffff72

PRAM7_2 equ $ffff74

PRAM7_3 equ $ffff76
TPU Programming Library MOTOROLA
TPUPN13/D 13

PRAM7_4 equ $ffff78

PRAM7_5 equ $ffff7a

ORG $6000

The following line initializes channels 4 through 7 for SM operation

MOVE.W #$DDDD,(CFSR2).l ;CHANNEL FUNCTION SELECT, VALUE MAY DIFFER FOR OTHER MASK SETS

The STEPINIT subroutine configures the channels for SM operation. It sets the acceleration constants
and initializes the position registers.

STEPINIT MOVE.W #$CCCC,(PRAM4_1).l ;SET PIN CONTROL 4

MOVE.W #$3333,(PRAM5_1).l ;SET PIN CONTROL 5

MOVE.W #$9999,(PRAM6_1).l ;SET PIN CONTROL 6

MOVE.W #$6666(PRAM7_1).l ;SET PIN CONTROL 7

MOVE.W #$81,(PRAM4_0).l ;CHANNEL CONTROL 4

MOVE.W #$82,(PRAM5_0).l ;CHANNEL CONTROL 5

MOVE.W #$81,(PRAM6_0).l ;CHANNEL CONTROL 6

MOVE.W #$82,(PRAM7_0).l ;CHANNEL CONTROL 7

MOVE.W #$7FFF,(PRAM4_2).l ;PRESUMED MIDPOINT LOCATION

MOVE.W #$7FFF,(PRAM4_3).l ;DESIRED POSITION

MOVE.W #$1,(PRAM4_4).l ;NEXT STEP RATE AND MOD CNT

MOVE.W #$E07,(PRAM4_5).l ;STEP RATE CNT AND LAST SEC CHN

MOVE.W #$4D,(PRAM5_2).l ;STEP CNTL 0

MOVE.W #$D9F,(PRAM5_3).l ;STEP CNTL 1

MOVE.W #$AA00,(HSRR1).l ;HSR FOR INIT

MOVE.W #$FF00,(CPR1).l ;SET CHNS TO HIGH PRIORITY

The CYCLE subroutine resets the CURRENT_POSITION address to zero and issues a step request.
In effect, DESIRED_POSITION never equals CURRENT_POSITION.

CYCLE MOVE.W #$0,(PRAM4_2).l ;CURRENT POSITION

MOVE.W #$300,(HSRR1).l ;HSR STEP REQUEST

BRA CYCLE

8.3 LISTING FOR CPU16-BASED MICROCONTROLLERS

Objective: This program continually rotates a stepper motor.

Method: The stepper motor is driven by TPUCH4 through TPUCH7 in a full-step sequence using

the SM Algorithm.

This program was assembled on the IASM16 Assembler available with the ICD16 In-Circuit Debugger
from P&E Microcomputer Systems. It was run on an MC68HC16Y1EVB.

CFSR2 equ $fe10

CFSR3 equ $fe12

HSQR0 equ $fe14

HSQR1 equ $fe16

HSRR0 equ $fe18

HSRR1 equ $fe1a

CPR1 equ $fe1e

PRAM4_0 equ $ff40

PRAM4_1 equ $ff42

PRAM4_2 equ $ff44

PRAM4_3 equ $ff46

PRAM4_4 equ $ff48

PRAM4_5 equ $ff4a
 MOTOROLA TPU Programming Library
14 TPUPN13/D

PRAM5_0 equ $ff50

PRAM5_1 equ $ff52

PRAM5_2 equ $ff54

PRAM5_3 equ $ff56

PRAM5_4 equ $ff58

PRAM5_5 equ $ff5a

PRAM6_0 equ $ff60

PRAM6_1 equ $ff62

PRAM6_2 equ $ff64

PRAM6_3 equ $ff66

PRAM6_4 equ $ff68

PRAM6_5 equ $ff6a

PRAM7_0 equ $ff70

PRAM7_1 equ $ff72

PRAM7_2 equ $ff74

PRAM7_3 equ $ff76

PRAM7_4 equ $ff78

PRAM7_5 equ $ff7a

The following code is included to set up the reset vector ($00000 – $00006). It may be changed for dif-
ferent systems.

ORG $0000 ;PUT THE FOLLOWING RESET VECTOR INFORMATION

;AT ADDRESS $00000 OF THE MEMORY MAP

DW $0000 ;ZK=0, SK=0, PK=0

DW $0200 ;PC=200 -- INITIAL PROGRAM COUNTER

DW $3000 ;SP=3000 -- INITIAL STACK POINTER

DW $0000 ;IZ=0 -- DIRECT PAGE POINTER

ORG $0400 ;BEGIN PROGRAM AT MEMORY LOCATION $0400

The following code initializes and configures the system, including software watchdog and system
clock.

INITSYS ;give initial values for extension registers

;AND INITIALIZE SYSTEM CLOCK AND COP

LDAB #$0F

TBEK ;POINT EK TO BANK F FOR REGISTER ACCESS

LDAB #$00

TBXK ;POINT XK TO BANK 0

TBYK ;POINT YK TO BANK 0

TBZK ;POINT ZK TO BANK 0

TBSK

LDD #$0003 ;AT RESET, THE CSBOOT BLOCK SIZE IS 512K.

STD CSBARBT ;THIS LINE SETS THE BLOCK SIZE TO 64K SINCE

;THAT IS WHAT PHYSICALLY COMES WITH THE EVB16

LDAA #$7F ;W=0, X=1, Y=111111

STAA SYNCR ;SET SYSTEM CLOCK TO 16.78 MHZ

CLR SYPCR ;TURN COP (SOFTWARE WATCHDOG) OFF,

;SINCE COP IS ON AFTER RESET

LDS #$f000

LDAB #$0F

TBEK ;USE BANK $0F FOR PARAMETER RAM

The following line initializes channels 4 through 7 for SM operation.

LDD #$DDDD

STD CFSR2 ;CHANNEL FUNCTION SELECT
TPU Programming Library MOTOROLA
TPUPN13/D 15

The STEPINIT subroutine configures the channels for SM operation. It sets the acceleration constants
and initializes the position registers.

STEPINIT LDD #$CCCC

STD PRAM4_1 ;SET PIN CONTROL 4

LDD #$3333

STD PRAM5_1 ;SET PIN CONTROL 5

LDD #$9999

STD PRAM6_1 ;SET PIN CONTROL 6

LDD #$6666

STD PRAM7_1 ;SET PIN CONTROL 7

LDD #$81

STD PRAM4_0 ;CHANNEL CONTROL 4

LDD #$82

STD PRAM5_0 ;CHANNEL CONTROL 5

LDD #$81

STD PRAM6_0 ;CHANNEL CONTROL 6

LDD #$82

STD PRAM7_0 ;CHANNEL CONTROL 7

LDD #$7FFF

STD PRAM4_2 ;PRESUMED MIDPOINT LOCATION

LDD #$7FFF

STD PRAM4_3 ;DESIRED POSITION

LDD #$1

STD PRAM4_4 ;NEXT STEP RATE AND MOD CNT

LDD #$E07

STD PRAM4_5).l;STEP RATE CNT AND LAST SEC CHN

LDD #$4D

STD PRAM5_2 ;STEP CNTL 0

LDD #$D9F

STD PRAM5_3 ;STEP CNTL 1

LDD #$AA00

STD HSRR1 ;HSR FOR INIT

LDD #$FF00

STD CPR1 ;SET CHNS TO HIGH PRIORITY

The CYCLE subroutine resets the CURRENT_POSITION address to zero and issues a step request.
In effect, DESIRED_POSITION never equals CURRENT_POSITION.

CYCLE LDD #$0

STD PRAM4_2 ;CURRENT POSITION

LDD #$300

STD HSRR1 ;HSR STEP REQUEST

BRA CYCLE

9 SM Algorithm
The following description is provided as a guide only, to aid understanding of the function. The exact
sequence of operations in microcode may be different from that shown, in order to optimize speed and
code size. TPU microcode source listings for all functions in the TPU function library can be downloaded
from the Motorola Freeware bulletin board. Refer to Using the TPU Function Library and TPU Emulation
Mode (TPUPN00/D) for detailed instructions on downloading and compiling microcode.

The SM time function consists of four states, described below. For clarity, reference is made to internal
flags in the following descriptions. These internal TPU control bits are not available to the user. Flag0
determines the direction of rotation of CHANNEL_CONTROL. If negated, a left rotate of
 MOTOROLA TPU Programming Library
16 TPUPN13/D

CHANNEL_CONTROL determines the pattern for the output pin level. If asserted, a right rotate of
CHANNEL_CONTROL determines the pattern for the output pin level. Flag1 indicates that stepping is
in progress.

9.1 State 1: Init
Condition: HSR1, HSR0, M/TSR, LSR, Pin, Flag0 = 10xxxx
Match Enable: Disable

Summary:
This state is entered as a result of an HSR %10. In this state, the channel latches are configured
using CHANNEL_CONTROL. CHANNEL_CONTROL is subsequently updated by the TPU with
PIN_CONTROL.

Algorithm:
Configure the channel latches via CHANNEL_CONTROL
Update CHANNEL_CONTROL with PIN_CONTROL
Clear flag1 and all service requests
Assert interrupt request

9.1.1 State 2: Step_Request

Condition: HSR1, HSR0, M/TSR, LSR, Pin, Flag0 = 11xxxx
Match Enable: Disable

Summary:
This state is entered as a result of an HSR %11. During this state, the TPU determines, based on
CURRENT_POSITION and DESIRED_POSITION, the direction that the motor should be stepped.
Whenever DESIRED_POSITION is less than CURRENT_POSITION, the bit pattern from MSB to
LSB defines the output levels at the programmed step rates, i.e., bit 14 is moved into bit 15 to define
the output, and flag0 is negated, directing activity to state 3. Whenever DESIRED_POSITION is
greater than CURRENT_POSITION, the bit pattern from LSB to MSB defines the output levels at
the programmed step rates, i.e., bit 0 is moved into bit 15 to define the output, and flag0 is asserted,
directing activity to state 4.

Algorithm:
If (flag1 = 1) then /* is stepping in progress? */

End /* yes, no need to initiate a step request */
}
Else, assert flag1 /* no, set stepping flag and begin */
Save TCR1 time into ERT /* TCR1 value to be used in STEP_SETUP */

TEST:
If (DESIRED_POSITION = CURRENT_POSITION) then

Clear flag1 and all service requests /* stepping done */
Assert interrupt request
End

}
Else, if (DESIRED_POSITION > CURRENT_POSITION) then

Assert flag0 /* assert step direction flag */
Goto RIGHT_ROT

}
Else, negate flag0 /* negate step direction flag */
Goto LEFT_ROT
TPU Programming Library MOTOROLA
TPUPN13/D 17

9.1.2 State 3: Left_Rot_Chn_Cntl

Condition: HSR1, HSR0, M/TSR, LSR, Pin, Flag0 = 001xx0
Match Enable: Enable

Summary:
This state is entered after a match event while flag0 is negated. In this state, while
CURRENT_POSITION is less than DESIRED_POSITION, stepping proceeds in the direction spec-
ified by the CHANNEL_CONTROL bit pattern from MSB to LSB.

Algorithm:
LEFT_ROT:

Decrement MOD_CNT
NEXT_STEP_RATE_TEMP = NEXT_STEP_RATE
If (CURRENT_POSITION ≥ DESIRED_POSITION + STEP_RATE_CNT) then

Decrement CURRENT_POSITION
If (NEXT_STEP_RATE < STEP_RATE_CNT) then

Increment NEXT_STEP_RATE
}
Goto STEP_SETUP /* setup next step */

}
Else, if (NEXT_STEP_RATE = 1) then /*is NEXT_STEP_RATE minimum?*/

If (CURRENT_POSITION > DESIRED_POSITION) then
Decrement CURRENT_POSITION
Goto STEP_SETUP /* setup next step */

}
Else {

Goto TEST
}

}
Else, {

Decrement CURRENT_POSITION
Decrement NEXT_STEP_RATE
Goto STEP_SETUP /* setup next step */

}

9.1.3 State 4: Right_Rot_Chn_Cntl

Condition: HSR1, HSR0, M/TSR, LSR, Pin, Flag0 = 001xx1
Match Enable: Enable

Summary:
This state is entered after a match event while flag0 is asserted. In this state, while
CURRENT_POSITION is greater than DESIRED_POSITION, stepping proceeds in the direction
specified by the CHANNEL_CONTROL bit pattern from LSB to MSB.

Algorithm:
RIGHT_ROT

Increment MOD_CNT
NEXT_STEP_RATE_TEMP = NEXT_STEP_RATE
If (DESIRED_POSITION ≥ CURRENT_POSITION + STEP_RATE_CNT) then

Increment CURRENT_POSITION
If (NEXT_STEP_RATE < STEP_RATE_CNT) then

Increment NEXT_STEP_RATE
}
Goto STEP_SETUP /* setup next step */

}

 MOTOROLA TPU Programming Library
18 TPUPN13/D

Else, if (NEXT_STEP_RATE = 1) then /*is NEXT_STEP_RATE minimum?*/
If (DESIRED_POSITION > CURRENT_POSITION) then

Increment CURRENT_POSITION
Goto STEP_SETUP /* setup next step */

}
Else {

Goto TEST
}

}
Else {

Increment CURRENT_POSITION
Decrement NEXT_STEP_RATE
Goto STEP_SETUP /* setup next step */

}

9.1.4 Step Setup Routine (Subroutine)
STEP_SETUP /*calculate match time for step; MATCH_TEMP

 is a temporary register */
MATCH_TEMP = ERT + STEP_CNTL1 –

STEP_CNTL0 ∗ (NEXT_STEP_RATE_TEMP + 1)]
SHIFT_DIRECTION_TEMP = flag0 /* save flag0 state for subsequent branching

because channel will be changed;
SHIFT_DIRECTION_TEMP is a temporary

register*/
LOOP /*since a separate pair of CHANNEL_CONTROL

and PIN_CONTROL parameters are associated
with each stepper motor channel, the following
references are to those parameters associated

with the current channel of operation */
If (SHIFT_DIRECTION_TEMP = 0) then

Rotate CHANNEL_CONTROL left
}
Else { /* SHIFT_DIRECTION_TEMP = 1 */

Rotate CHANNEL_CONTROL right
}
If (bit 15 of CHANNEL_CONTROL = 0) then

Configure pin logic for high to low transition
}
Else { /* bit 15 of CHANNEL_CONTROL = 1 */

Configure pin logic for low to high transition
}
If (MOD_CNT = 0) then

CHANNEL_CONTROL = PIN_CONTROL
}
Setup next match time = MATCH_TEMP
Negate all service requests
If (LAST_SEC_CHAN = current channel) then {

Change channel to (current channel + 1)
Goto LOOP

}

The following table shows the SM state transitions listing the service request sources and channel con-
ditions from current state to next state. Figure 4 illustrates the flow of SM states.
TPU Programming Library MOTOROLA
TPUPN13/D 19

NOTES:
1. Conditions not specified are “don't care.”
2. HSR = Host service request

LSR = Link service request
M/TSR = Either a match or transition (input capture) service request occurred
(M/TSR = 1) or neither occurred (M/TSR = 0).

SM State Transition Table

Current State HSR M/TSR LSR Pin Flag0 Next State

Any State 10
11

—
—

—
—

—
—

—
—

S1 Init
S2 Step_Request

 S1 Init 00
00

1
1

—
—

x
x

1
0

S4 Right_Rot_Chn_Cntl
S3 Left_Rot_Chn_Cntl

 S2 Step_Request 00
00

1
1

—
—

x
x

1
0

S4 Right_Rot_Chn_Cntl
S3 Left_Rot_Chn_Cntl

 S3 Left_Rot_Chn_Cntl 00
00

1
1

—
—

x
x

1
0

S4 Right_Rot_Chn_Cntl
S3 Left_Rot_Chn_Cntl

 S4 Right_Rot_Chn_Cntl 00
00

1
1

—
—

x
x

1
0

S4 Right_Rot_Chn_Cntl
S3 Left_Rot_Chn_Cntl

Unimplemented
 Conditions

01
00

—
0

—
1

—
—

—
—

—
—

 MOTOROLA TPU Programming Library
20 TPUPN13/D

Figure 4 SM State Flow Diagram

1048A

KEY:

HSR M/TSR LSR PIN FLAG0 FLAG1

XX X X X X X

DESIRED _ POSITION
> CURRENT POSITION

HSR = 11

S3
LEFT_ ROT_
CHN_CNTL_

00xxx0

S4
RIGHT_ ROT_

CHN_CNTL

00xxx1

S1
INIT

10xxxx

DESIRED_ POSITION
< CURRENT POSITION

M/T = 1
FLAG0 = 0

HSR = 11

DESIRED_ POSITION
> CURRENT POSITION

M/T = 1
FLAG0 = 1

HSR = 11

S2
STEP_ REQUEST

11xxxx

HSR = 10

DESIRED_ POSITION
< CURRENT POSITION

M/T = 1
FLAG0 = 0

M/T = 1
FLAG0 = 1
TPU Programming Library MOTOROLA
TPUPN13/D 21

NOTES
 MOTOROLA TPU Programming Library
22 TPUPN13/D

NOTES
TPU Programming Library MOTOROLA
TPUPN13/D 23

How
USA
 P.O
Mfa
INT
JAP
6F S
ASI
51 T
Mfa

Motorola uitability
of its pro any and
all liabilit can and
do vary i ola does
not conv intended
for surgi create a
situation demnify
and hold ney fees
arising o rola was
negligen ity/Affir-
mative A
 to reach us:
/EUROPE/Locations Not Listed: Motorola Literature Distribution;
. Box 5405, Denver Colorado 80217. 1-800-441-2447, (303) 675-2140

x™: RMFAX0@email.sps.mot.com - TOUCHTONE (602) 244-6609, U.S. and Canada Only 1-800-774-1848
ERNET: http://Design-NET.com
AN: Nippon Motorola Ltd.; Tatsumi-SPD-JLDC,
eibu-Butsuryu-Center, 3-14-2 Tatsumi Koto-Ku, Tokyo 135, Japan. 81-3-3521-8315

A PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,
ing Kok Road, Tai Po, N.T., Hong Kong. 852-26629298

x is a trademark of Motorola, Inc.

 reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the s
ducts for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims
y, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications
n different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motor
ey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems
cal implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could
 where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall in
 Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attor
ut of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Moto
t regarding the design or manufacture of the part. M O T O R O L A and ! are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportun
ction Employer.

	1 Functional Overview
	2 Detailed Description
	2.1 Stepper Motor Initialization
	2.2 Stepper Motor Interrupts

	3 Function Code Size
	4 Function Parameters
	Figure 1 TPU Channel Parameter RAM CPU Address Map...
	Figure 2 Function Parameter RAM Assignment
	4.1 CHANNEL_CONTROL
	4.2 PIN_CONTROL
	4.2.1 Primary Channel
	4.2.2 Secondary Channel

	4.3 CURRENT_POSITION
	4.4 DESIRED_POSITION
	4.5 LAST_SEC_CHAN
	4.6 STEP_RATE_CNT
	4.7 NEXT_STEP_RATE
	4.8 MOD_CNT
	4.9 STEP_CNTL0 and STEP_CNTL1

	5 Host Interface to Function
	Figure 3 TPU Address Map

	6 Function Configuration
	7 Performance of Function
	8 Function Example
	8.1 Continuous Rotation
	8.1.1 Introduction
	8.1.1.1 Logic-to-Motor Interface
	8.1.1.2 Programming for Continuous Rotation
	8.1.1.3 Initialization

	8.2 Listing for CPU32-Based Microcontrollers
	8.3 LISTING FOR CPU16-BASED MICROCONTROLLERS

	9 SM Algorithm
	9.1 State 1: Init
	9.1.1 State 2: Step_Request
	9.1.2 State 3: Left_Rot_Chn_Cntl
	9.1.3 State 4: Right_Rot_Chn_Cntl
	9.1.4 Step Setup Routine (Subroutine)
	Figure 4 SM State Flow Diagram

